The Importance of Electrostatic Interactions in the Stereoselective 1,3-Dipolar Cycloadditions of Nitrones to Chiral Allyl Ethers: An Experimental and Force Field Approach

Author(s):  
Rita Annunziata ◽  
Maurizio Benaglia ◽  
Mauro Cinquini ◽  
Franco Cozzi ◽  
Laura Raimondi
2018 ◽  
Author(s):  
Maximiliano Riquelme ◽  
Alejandro Lara ◽  
David L. Mobley ◽  
Toon Vestraelen ◽  
Adelio R Matamala ◽  
...  

<div>Computer simulations of bio-molecular systems often use force fields, which are combinations of simple empirical atom-based functions to describe the molecular interactions. Even though polarizable force fields give a more detailed description of intermolecular interactions, nonpolarizable force fields, developed several decades ago, are often still preferred because of their reduced computation cost. Electrostatic interactions play a major role in bio-molecular systems and are therein described by atomic point charges.</div><div>In this work, we address the performance of different atomic charges to reproduce experimental hydration free energies in the FreeSolv database in combination with the GAFF force field. Atomic charges were calculated by two atoms-in-molecules approaches, Hirshfeld-I and Minimal Basis Iterative Stockholder (MBIS). To account for polarization effects, the charges were derived from the solute's electron density computed with an implicit solvent model and the energy required to polarize the solute was added to the free energy cycle. The calculated hydration free energies were analyzed with an error model, revealing systematic errors associated with specific functional groups or chemical elements. The best agreement with the experimental data is observed for the MBIS atomic charge method, including the solvent polarization, with a root mean square error of 2.0 kcal mol<sup>-1</sup> for the 613 organic molecules studied. The largest deviation was observed for phosphor-containing molecules and the molecules with amide, ester and amine functional groups.</div>


2010 ◽  
Vol 75 (5) ◽  
pp. 577-591 ◽  
Author(s):  
Ling Zhang ◽  
J. Ilja Siepmann

The transferable potentials for phase equilibria (TraPPE) force field is extended through the development of a non-polarizable five-site ammonia model. In this model, the electrostatic interactions are represented by three positive partial charges placed at the hydrogen position and a compensating partial charge placed on an M site that is located on the C3 molecular axis and displaced from the nitrogen atom toward the hydrogen atoms. The repulsive and dispersive interactions are represented by placing a single Lennard–Jones site at the position of the nitrogen atom. Starting from the five-site model by Impey and Klein (Chem. Phys. Lett. 1984, 104, 579), this work optimizes the Lennard–Jones parameters and the magnitude of the partial charges for three values of the M site displacement. This parameterization is done by fitting to the vapor–liquid coexistence curve of neat ammonia. The accuracy of the three resulting models (differing in the displacement of the M site) is assessed through computation of the binary vapor–liquid equilibria with methane, the structure and the dielectric constant of liquid ammonia. The five-site model with an intermediate displacement of 0.08 Å for the M site yields a much better value for the dielectric constant, whereas differences in the other properties are quite small.


2017 ◽  
Vol 146 (5) ◽  
pp. 054501 ◽  
Author(s):  
Julian Michalowsky ◽  
Lars V. Schäfer ◽  
Christian Holm ◽  
Jens Smiatek

1995 ◽  
Author(s):  
Markus Knickmeier ◽  
Roland Mohr ◽  
Gerhard Erker ◽  
Udo Höweler

Sign in / Sign up

Export Citation Format

Share Document